(-4m^2+7n^2-9n)-[(7m^2-9m+7n)+(-7m^2)+4n^2]=

Simple and best practice solution for (-4m^2+7n^2-9n)-[(7m^2-9m+7n)+(-7m^2)+4n^2]= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-4m^2+7n^2-9n)-[(7m^2-9m+7n)+(-7m^2)+4n^2]= equation:


Simplifying
(-4m2 + 7n2 + -9n) + -1[(7m2 + -9m + 7n) + (-7m2) + 4n2] = 0

Reorder the terms:
(-4m2 + -9n + 7n2) + -1[(7m2 + -9m + 7n) + (-7m2) + 4n2] = 0

Remove parenthesis around (-4m2 + -9n + 7n2)
-4m2 + -9n + 7n2 + -1[(7m2 + -9m + 7n) + (-7m2) + 4n2] = 0

Reorder the terms:
-4m2 + -9n + 7n2 + -1[(-9m + 7m2 + 7n) + (-7m2) + 4n2] = 0

Remove parenthesis around (-9m + 7m2 + 7n)
-4m2 + -9n + 7n2 + -1[-9m + 7m2 + 7n + (-7m2) + 4n2] = 0

Reorder the terms:
-4m2 + -9n + 7n2 + -1[-9m + 7m2 + (-7m2) + 7n + 4n2] = 0

Combine like terms: 7m2 + (-7m2) = 0
-4m2 + -9n + 7n2 + -1[-9m + 0 + 7n + 4n2] = 0
-4m2 + -9n + 7n2 + -1[-9m + 7n + 4n2] = 0
-4m2 + -9n + 7n2 + [-9m * -1 + 7n * -1 + 4n2 * -1] = 0
-4m2 + -9n + 7n2 + [9m + -7n + -4n2] = 0

Reorder the terms:
9m + -4m2 + -9n + -7n + 7n2 + -4n2 = 0

Combine like terms: -9n + -7n = -16n
9m + -4m2 + -16n + 7n2 + -4n2 = 0

Combine like terms: 7n2 + -4n2 = 3n2
9m + -4m2 + -16n + 3n2 = 0

Solving
9m + -4m2 + -16n + 3n2 = 0

Solving for variable 'm'.

The solution to this equation could not be determined.

See similar equations:

| 2y-27-6y+33= | | h+7=-9 | | 2y+4=4x | | 2x+3y-z=23 | | 6y-5=8y-11 | | 6+.33(x-9)=.5(2-x) | | 4y=.78 | | 4y=3.6 | | 4y=4.015 | | 2+6h+60=90 | | 5a+5a=5 | | 5a+5whena=5 | | 4y=2.13 | | 6-2(x+7)=-4 | | 6h+60=90 | | 8x^3+-72x^2=0 | | 8(x-3)-(x-3)=7 | | x^4+2x^2y^2+y^4-x^3+3xy^2=0 | | 7p^2=2 | | -14.8+19.2= | | x-3/4=2x+1/4 | | -3=10x-1 | | mx+9=x | | X^2+1-72=0 | | 5x+2(5x+4)=158 | | 2g+8=4g+14 | | -6x=-100x | | 1-4x^2-4yx=0 | | x/7=x-3/4 | | 5y=-5x-25 | | x+7=x-24 | | 0+x=2-x |

Equations solver categories